Pengalaman mempelajari subbab sebelumnya akan di perguna kan dalam mempelajari determinan dan invers matriks pada subbab ini.
1. Determinan Matriks Persegi
Pada bagian sebelumnya, Anda telah mengenal matriks persegi, yaitu matriks yang banyak barisnya sama dengan banyak kolomnya. Pembahasan materi determinan matriks persegi yang dibahas di buku ini dibatasi hanya sampai matriks 3 × 3.
a. Determinan Matriks 2 × 2 Matriks berordo 2 × 2 yang terdiri atas dua baris dan dua kolom. Pada bagian ini akan dibahas determinan dari suatu matriks berordo 2 × 2.
Determinan matriks A di defi nisikan sebagai selisih antara perkalian elemenelemen pada diagonal utama dengan perkalian elemen-elemen pada diagonal sekunder. Determinan dari matriks A dinotasikan dengan det A atau |A|. Nilai dari determinan suatu matriks berupa bilangan real.
b. Determinan Matriks 3 × 3 Pada bagian ini, Anda akan mempelajari determinan mariks berordo 3 × 3. Misalkan A matriks persegi berordo 3 × 3 2.
Invers Matriks Persegi Pada bagian D.1, Anda telah mempelajari determinan dari suatu matriks persegi. Konsep determinan tersebut akan dipergunakan untuk mencari invers dari suatu matriks. Pembahasan dibatasi hanya untuk matriks persegi ordo 2 × 2. Ketika di SMP, Anda telah mempelajari operasi hitung pada bilangan.
Pada saat mempelajari konsep tersebut, Anda dikenalkan dengan istilah invers (kebalikan) bilangan. Suatu bilangan jika dikalikan dengan inversnya akan menghasilkan unsur identitas. Senada dengan hal tersebut, dalam aljabar matriks pun berlaku ketentuan seperti itu. Ketika Anda mengalikan suatu matriks dengan matriks inversnya, akan dihasilkan identitas, yang dalam hal ini adalah matriks identitas.
Definisi Invers Matriks Misalkan A dan B adalah dua matriks yang berordo 2 × 2 dan memenuhi persamaan AB = BA = I2 maka matriks A adalah matriks invers dari matriks B atau matriks B adalah matriks invers dari matriks A.